

Defining a Data Management Strategy for

USGS Chesapeake Bay Studies

Cassandra Ladino, USGS September 11, 2013

Key Questions

- What data management means to different audiences?
- What are our next steps?
- What near term challenges are up a head?

What Does Data MGMT Mean?

- Data management doesn't mean the same thing to every one.
- The use cases for data management change when looking at a project from different perspectives...
 Scientist, Regional Team, Public Viewpoint.
- Data integration is the key aspect of changing viewpoints.

- Scientist / Local Level databases (Access, MySQL) to store observation records, seamless, queries multiple data source that have been integrated into a single data base.
- Regional Team / Connected Project Level Independent data files, database (ScienceBase) to store desperate data files for a regional project team, allows archiving, allows focused group search and sharing
- Public / Disconnected Project Level Multiple projects with multiple independent data sets located nationally in a single publically available database (ScienceBase), Relationships waiting to be discovered, previously unknown science connections made through key words, search, location.

Scientist / Local

Record Leve Integration

 Regional Team / **Connected Project**

Land Cover Ches Bay Watershed

WQ Trends Analysis 2010 HUC 0207

USGS Network accessible storage location, data sets used for regional synthesis

Public / Disconnected Project

Where We Are and Where We Need to Go?

- Currently practicing data management for public groups and partner agencies.
 - ScienceBase
 - Data Delivery
 - Web Service Provider
- FY13 & 14 set up plans and conceptual frameworks to implement data management practices based on using ScienceBase for regional teams.
- Future years develop a local infrastructure that allows record level integration for scientists.

How Do We Get There?

 It helps to think of data in terms of the stages it goes through in a project cycle to set up infrastructure.

 Then we develop Data Management Plan frameworks to ensure consistency and allow integration.

Create more scientist incentive and "buy in".

Data Stages

- •Raw Data field data, lab results, unmodified
- •Base Data cleaned up and quality assured
- Project Data Hybrid products, specialized multi dataset integration for special project needs
- Derived Data Analysis derivatives (WQ Trends)
- •Data Product Final data set referenced in report (ScienceBase)

DMPf Part III: Research Data Management Data Maturity Model

<<Level 4>>
Data
Product

Graphic courtesy of the USGS DMPf Implementation Working Group (Steve Tessler, TX WSC, AK WSC, CDI)

Data Stages at The Regional Team Level

- Major Goal: preserve and share data amongst team members at each data stage using ScienceBase.
- Data Folders:
 - Raw Data: 1 snap shot of raw data before any manipulation
 - Base Data: 1 snap shot of approved raw data for project use
 - Project Data: many snap shots of special, one off, exploratory analysis
 - Derived Data: many snap shots of final data products associated with one project as they become approved and published
 - Data Products: not needed (public level only)

Data Management Plan for Local Data Integration

- After we develop a functioning system at the Regional Team level, we will focus more on record level integration.
- This involves creating Data Management Plans based on work by the USGS DMPf Implementation Working Group (Steve Tessler, TX WSC, AK WSC, CDI).
- We will need to adapt the DMPF's to each type of USGS Chesapeake Bay studies project.
- The final plans will be used at the inception of every project.

Summary of Challenges

- Educate and encourage regional level data management in workflows and/or identify a data "gate keeper".
- Create DMPf's for each of the sciences (WQ, Land Cover Change, Fish Health, Sediment...).
- Explore logistics and cost of implementing a local data management system to support local level project work and data analysis.
 - Location
 - Infrastructure
 - Schema
 - Accessibility
- Educate and encourage scientists on how to publish data as an independent product in unison with report publishing.
- Evaluate business model options (distributed vs. central)

ScienceBase as a Regional Level Tool

Positives

- Accessible by all
- User Interface
- Backup and Storage
- Easy folder setup
- Easy permissions control

Difficulties

- Reinforcing use over local network storage
- Checking in/ Checking out data (versioning)
- Providing web services for all data layers
- Uploads of many large data sets

Questions / Suggestions?

- Contact Email:
 - Cassandra Ladino: ccladino@usgs.gov
- Web URL:
 - Ches Bay ScienceBase
 - https://www.sciencebase.gov/catalog/?community=USGS+ Chesapeake+Bay
 - Defining a Data MGMT Strategy OFR
 - http://pubs.er.usgs.gov/publication/ofr20131005
 - Ches Bay CDI Wiki Page
 - https://my.usgs.gov/confluence/display/cdi/Chesapeake+Data+Management+System+Greenfield